米兰体育官方网站(MILAN SPORTS)赔率最高在线投注平台(访问: hash.cyou 领取999USDT)
全球海风有望开启新一轮增长周期,GWEC 预测 2024-2026 年海风新增装机量达 18GW、23GW 和 29GW,CAGR 为 28%。分市场需求来看: 国内:1)装机:2022-2023 年,中国海上风电项目延期现象普遍,招标量与装机量背 离较严重, 2023 年市场预期装机量 10GW,实际装机量仅为 7.2GW。而 2024 年以来,项 目审批明显提速,江苏国信大丰、三峡大丰陆续海缆中标,预示国内早一批延期项目得到 解决,海风核准流程理顺,其他海风项目有望重回轨道。2)目标:“十四五”期间,各省 海上风电新增装机总规模约 57.2GW,到 2025 年,累计装机并网容量将超过 64GW。 CWEA 预测“十五五”期间,海风新增装机规模将达 100GW 以上。 欧洲:1)装机:欧洲海风再加速,欧洲市场 2024-2026E,海上风电新增装机量分别 为 3.7GW、5.6GW 和 8.4GW,CAGR 为 50.4%,众多项目进入建设阶段多环节订单排产爆 满,本土消化能力有限订单有望外溢至中国厂商。2)目标:欧洲各国携手推动海上风电建 设,英国+欧盟 2030 年装机目标为 161GW。 新兴市场:美、日、韩、越四国提出 2030 年建设海风共 58GW。美国海上风电开发潜 力巨大,IRA 法案恢复税收减免政策,有望驱动需求加速释放。越南电力需求增长迅速, 规划海风到 2050 年超 70GW,日本处于环评及审核阶段的项目约 15GW,预计 2025 年后 将迎来较大发展。
供给层面: 技术趋势:1)大型化:全球海上风电单机组平均容量提升显著,2023 年欧洲/中国平 均单机容量达 9.7/9.6MW,各环节价值量面临摊薄的同时也使得大型化产能如塔筒、大型 零部件结构性紧缺。2)深海化:欧洲新建风电场正在迈入深远海,中国海上风电向深远海 延伸趋势明显,高电压等级海缆、漂浮式海风基础等环节收益。 竞争格局:海缆、整机环节技术壁垒较高,投资成本较大,验证周期较长,市场集中 度较高,利润相对丰厚;塔桩、铸锻件环节受限于产品重量尺寸限制,围绕基地码头有效 半径展开竞争,区域性较明显,市场较为分散;轴承环节国内起步晚,市场份额较低。 出海:1)产能紧缺:受欧洲装机景气度影响,海外本土塔桩、海缆、大型零部件产能 紧缺,本土厂商订单排期爆满,客观上存在外溢机会;2)原材料价低:国内钢材价格、人 工成本较海外更具优势,即使考虑出海运费,仍然具备价格优势。中国厂商加快出海步 伐,有望打开增长新空间。
海上风电 1991 年起源于丹麦,欧洲的海上风电发展分为三个阶段:1、技术可行性验 证阶段(1991-2001 年):在此期间建设规模和单机容量较小,期间丹麦、荷兰、英国等国 家合计建设了 9 个海上风电项目,其中 5 个项目容量低于 10 兆瓦;2、商业化开发阶段 (2002-2011 年):在此期间海上风电的建设规模逐渐增大,技术创新加速,政府扶持力度 加大,风电场的平均规模达到 400 兆瓦,累计装机规模超过了 6 吉瓦,海上风电进入了大 功率时代,平均单机功率达到 4 兆瓦;3、规模化及深远海开发阶段(2012 年-至今):在 此期间欧洲首先开始深水远海的探索,Hywind Scotland 是全球首个漂浮式海上风电场,海 上风电样机(Hywind Demo)于 2009 年投产,经多年运行验证之后,采用同源技术的试验 风电场,共包括 5 台单机容量 6MW 的风电机组,于 2017 年投运。
中国的海上风电发展晚于欧洲,分为四个阶段:1、试点运行(2008-2010 年):2008 年,中海油竖立起中国第一台海上风电试验机组,2009 年上海东海大桥海上风电项目启 动,这两个项目是我国海上风电的先行试点。2、探索发展(2010-2014 年):十二五期 间,对海风进行探索发展,2010 年《海上风电开发建设管理暂行办法》的出台,标志着我 国海上风电特许权招标正式启动。3、集中开发(2015-2021 年):国家能源局、国家发改 委出台了多个有利于海上风电的政策,如《关于 2018 年度风电建设管理有关要求的通知》 等,中国的海上风电迎来了大发展。2021 年底中国的总装机容量达到 2639 万千瓦,成为 世界第一。4、规模化和深远海开发(2022 年后):随着电价退补,海上风电回归理性发 展,海上风电场已向吉瓦级别发展,如三峡青洲 1GW 海上风电项目、大唐海南儋州 1.2GW 海上风电项目等,海上风力发电机组也从“十三五”期间的 4MW-8MW 突破到 10MW-15MW。
英国海上风电规划量大,经济性优势明显。根据 2022 年英国政府最新公布的《英国 能源安全战略》,到 2030 年,英国海上风电的发展目标将从之前的 40GW 提高到 50GW, 其中漂浮式风电的装机规模目标提高到了 5GW。2022 年英国开展了第四轮海上风电项目 差价合约(CD)竞拍,合计规模 7GW,拍电价为 37.35 英镑/MWh,较上一轮降低约 1.65- 3.65 英镑/兆瓦时,同时也低于陆上风电 42.47 英镑/兆瓦时和光伏 45.99 英镑/兆瓦时,成为 所有参加拍卖的可再生项目中上网电价最低的类型。此外,用海政策明确也是支持英国海 上风电发展的重要因素,2021 至今,海上风电项目主要在专属经济区内建设。
荷兰能源安全意识较强,海上风电发展较快。根据荷兰《可持续增长能源协议》,设 定 2023 年海上风电装机容量达到 4.5GW,实际新增装机 4.76GW,2023-2030 年将再增加 7GW,使 2030 年总装机容量达到 11.5GW。2022 年,荷兰制定了海上风能长期增长计划, 计划到 2040 年海上风电规模达到 50GW,到 2050 年达到 70GW。荷兰是欧洲最新使用非 价格标准进行海上风电项目招标的国家。2022 年全球首个“零补贴”海上风电场—— Hollandse Kust Zuid 在荷兰完成首次并网发电。除了海上发电,荷兰政府还计划在北海大 规模生产绿氢,以实现工业从天然气转型,而与其他北海国家建立互连,也有助于荷兰能 源的供应安全。
欧洲各国携手推动海上风电建设,欧盟 2030 年装机目标为 111GW。为应对能源危机 问题,实现碳中和战略目标,欧洲 2022 年各国不断提高海风规划容量。北欧四国(德国、 丹麦、比利时和荷兰)于 2022 年 5 月签署《埃斯比约宣言》,承诺 2030 年海风累计装机达65GW,到 2050 年累计装机 150GW,共同建设“欧洲绿色发电站”,为海上风电加速重添里 程碑。同年 8 月 30 日,欧洲 8 国在能源峰会上签署“马林堡宣言”,同意加强能源安全和 海上风电合作,计划在 2030 年将波罗的海地区海上风电装机容量提升至 19.6GW,为目前 容量的 7 倍。据 GWEC 预测,2024-2033 年欧洲国家海上风电新增装机 CAGR 达 25%。
日本海上风电加速发展,环评及审核阶段项目较多。日本于 2003 年建设第一个海上 风电示范项目,之后产业发展较为缓慢。从 2019 年起,日本海上风电政策加速,公布了 11 个海上风电开发海域。修订了《港湾法》,允许开发商和施工方利用港口码头进行海上 风电的开发建设。按照 2020 年 9 月的《海上风电产业愿景》,其规划到 2030 年海上风电实 现累计装机 10GW、到 2040 年实现累计装机 30-45GW。2020 年 6 月日本启动了第一个漂浮式风电项目竞标,同年 11 月启动了第一个固定基础海上风电项目的竞标。2023 年,日 本海上风电累计装机规模已达到 187MW。截至 2022 年底,处于环评及审核阶段的项目约 15GW,预计 2025 年后日本海上风电将迎来较大发展。
海风项目开工加速,2024-2025 年有望成为并网大年。1)江苏方面,2024 年江苏省发 布《2024 年江苏省重大项目名单》,包括龙源射阳 1000MW(24 年 7 月环评通过)、三峡 大丰 800MW(24 年 7 月环评通过)、国信大丰 850MW(24 年 7 月送出缆中标,9 月阵列 缆中标),其中国信大丰 850MW 项目送出缆及阵列缆中标人均为中天科技和东方电缆;三 峡大丰 800MW 项目于 23 年 11 月发布海缆中标公告,中标人为中天科技。2)广东方面, 2024 年广东省重点海上风电项目包括,青洲五、七共 2000MW 项目(24 年 8 月环评已受 理),青洲六 1000MW 项目(已开工),帆石一 1000MW 项目(24 年 9 月海缆招标),帆石 二 1000MW 项目(24 年 6 月风机中标,分别为明阳、电气风电、金风),红海湾三、四共 1000MW 项目(24 年 6 月已过核准)。中标人为中天科技。以上项目的最新进展预示国内 早一批延期项目得到解决,海风核准流程理顺,其他海风项目有望重回轨道。
2024-2025 年浙江、山东、广东三省海上风电有望迎来爆发。根据北极星风力发电网 统计,浙江方面,2024 年重点推进的海上风电项目有 8 个,象山 1 号海上风电场(二期)工 程、瑞安 1 号海上风电场工程、苍南 3 号海上风电项目、洞头 2 号海上风电项目、岱山 1 号海上风电场工程等,这 8 个海上风电项目总装机容量达 2893MW,再加上该省今年 8 月 新核准公示的普陀 2#、象山 3#-6#五个共计 2508MW 的海上风电项目。山东方面,2024 年 山东着力推进渤中 G 场址一期、半岛南 U1 二期、半岛北 BW 等海上风电重点项目,再加 上今年 5 月,三峡集团青岛深远海 400 万千瓦海上风电项目初步勘察开启招标,以及华电 青岛 200 万千瓦海上风电项目前期技术服务中标结果的落地,600 万千瓦规模化项目取得 了实质性进展。山东方面,2024 年 7 月,随着中核集团湛江徐闻东二海上风电项目核准文 件发布,广东省 15 个省管海域海上风电竞争配置项目全部完成核准,规模共 700 万千瓦。
全球海上风电单机组平均容量提升显著,大兆瓦机型平均单机容量增长约 22%。据 CWEA 数据,中国新增海陆风电机组平均单机容量呈快速提高趋势,2023 年中国新增海上 平均单机容量达 9.6MW,较 2022 年均值提高 2.2MW。据 WindEurope 数据,2023 年,全 球新安装的海上风电机组的平均单机容量为 9.58MW,各地区的平均容量分别为:欧洲 9.7MW,亚太 9.5MW,北美洲 12.2MW。2023 年,全球海上风电机组的大兆瓦机型订单也 达到了历史新高,平均单机容量为 14.9MW,较上一年增长了约 22%(2022 年为 12.2MW)。随着更大单机容量的风电机组即将进入市场,预计已安装的海上风电机组的平 均单机容量将在未来几年内持续增加。
海上风电大型化趋势确定,10MW 以上单机容量占比扩大。2023 年新增吊装的海上风 电机组中,单机容量 10MW 及以上的风电机组装机容量占比由 2022 年的 12.1%提升到 46.4%,主要集中在 11MW 和 12MW 机型,合计占比约 36.9%;12MW 以上风电机组装机 容量占比为 6.6%;2023 年新增吊装最大单机容量由 2022 年的 11MW 提升到 16.5MW。 2023 年,在所有吊装的海上风电机组中,8.0MW 以下风电机组装机容量占比 73.2%,比 2022 年下降了约 16 个百分点:8.0MW 至 9.0MW(不含 9.0MW)风电机组装机容量占比 13.7%,比 2022 年增长了 5.6pct;10MW 以上风电机组装机容量占比 9.3%,比 2022 年增 长了约 8pct。
欧洲新建风电场正在迈入深远海,中国海上风电向深远海延伸趋势明显。远海风电一 般指场区中心离岸距离大于 70km,深海风电指水深大于 50m 的场区,世界上 80%的海上 风力资源位于水深超过 60 米的海域。欧洲海域平均深度大于中国海域,深远海风电发展先 于中国,2019 年欧洲在建的海上风电项目平均离岸距离达 59km,英国的 Hornsea1 风电 场、德国的 EnBWHoheSee 和 EnBWAlbatros 风电场离岸距离超过 100km,而在新开标的风 电场中,最远离岸距离已达到 220km。中国已装机海上风电项目集中在离岸 30km、水深15-20m 的区域;2022 年已完成招标待建项目平均离岸距离 40km、水深 30m;2023 年待招 标项目平均离岸距离 50km、水深 35m。
漂浮式风电以半潜式为主,2033 年装机量有望达 8.3GW。据 GWEC 报告,漂浮式技 术主要有三种:单柱式、半潜式和张力腿式,单柱式曾经是漂浮式项目的主要技术方案, 但半潜式在过去几年发展很快,逐渐成为主流。张力腿式技术在灵活性上有一定优势,但 其安装过程复杂,锚链成本高,暂时市场份额较低。漂浮式海风发展可分为演示和试验阶 段(2009-2020 年)、商业前阶段(2021-2025 年)、商业阶段(从 2026 年起),预计 2033 年全球漂浮式海风新增装机量达 8.3GW,累计装机量达 31GW,其中,欧洲占比 60%,亚 太地区占比 33%,北美占比 7%。预计 2024-2033E 全球漂浮式海上风电新增装机 CAGR 达 69%。
中国深远海风电关键技术研制取得重大进展,装机路线以三立柱半潜式为主。目前中 国共有 6 个漂浮式海上风电项目(样机)实现投运或正在推进实施。除安装在三峡阳江沙 扒海上风电场的“三峡引领号”于 2021 年并网发电外,由中国海油主导的“海油观澜号”,在 距海南文昌 136km 的海上油田海域投运,成为全球第一个离岸距离超过 100km 和海水深度 超过 100m 的“双百”海上风电项目。另有中国海装主导推进的“扶摇号”,已在广东湛江罗斗 沙海域完成安装。中国进入安装阶段的漂浮式样机基础技术路线,都采用了三立柱半潜式方案,包括正在推进开发的部分样机,大多与采用固定式基础的大型海上风电场相连,或 作为其中一个发电单元运行。
全球海缆保持需求高增姿态,离岸距离提升海缆抗通缩属性。据 GWEC 数据,2023- 2030 年,预计对电缆的需求将以平均每年 18%的速度增长,而按价值计算,受益于海缆转 向更大、更有价值的电缆类型,预计在此期间将增长 15%,抗通缩属性明显。分地区来 看,2021 年,仅中国就消耗了全球海上风电电缆的 76%,到 2023 年,这数字将降至 35%。尽管这一数字有所下降,但考虑到中国超额完成安装目标的历史记录,预计需求将 以每年 13%的保守速度增长;亚太地区(不包括中国),预计到 2030 年需求将以每年 18%的速度增长;2023 年,欧洲占全球海上风电电缆需求的 27%,预计到 2030 年底,欧洲海 上风电电缆需求将以每年 21%的速度增长。
欧美固定式海基出现缺口,单桩/塔筒出海成为亮点。据 GWEC 统计,供给方面,2023 年全球固定式海风基础产能为 3880 套,其中,中国为 2945 套,占 76%,欧洲为 625 套,占 16%。至 2026 年,预计全球新增固定式海风基础 2242 套,其中中国 1172 套,占 52%,欧 洲 745 套,占 33%。需求方面,欧洲固定式海风基础有可能将于 2026 年出现供需缺口。据 GWEC 测算,如 2026 年欧洲的 745 套固定基础无法顺利投产,欧洲将出现供需缺口,并且 随着时间的推移,缺口将进一步扩大。类似的情况将出现在北美洲,预计北美 2025 年需求达到 193 套,而预计新增产能仅为 80 套。中国向欧美出口固定式海风基础将成为下一个海 风增长点。由于固定式单桩/塔筒重量大运输困难,港口稀缺资源制约扩产,中国单桩/塔筒 企业有望取得海外订单,改善盈利。
大型轴承设计、制造、安装困难,国产方案已实现技术突破。大型轴承在诸多方面存 在挑战,一是大兆瓦主轴承轴外圈直径一般超过 2 米,与铸件情况类似,超出了大部分市 场上的主轴承机床的装载能力;二是主流供应商集中于 SKF 和 FAG 两家,产能紧张;三 是国内主轴承供应商短期无法具备此类轴承的设计和加工能力。尤其是在直驱机型的 TRB 方面,目前 6MW 以上的海上风电直驱机型的主轴轴承的外径已突破 4 米,全球范围内的 产品供应商较少,国内市场主要依赖海外品牌。2024 年 3 月,世界首台 25 兆瓦级风电主 轴轴承及齿轮箱轴承,在洛阳轴研科技有限公司成功下线MW 海上抗台风型风力发电机组主轴轴承下线,国产方案实现技术突破。
风电轴承分为主轴轴承、偏航&变桨轴承、增速器轴承以及发电机轴承。一般每台风 力发电机平均配置 28 个轴承,其中包括(偏航轴承 1 个,变桨轴承 3 个,发电机轴承 2 个、主轴轴承 1-2 个(双馈机型 2 个单列圆锥轴承或调心滚子轴承;半直驱机型 2 个单列 圆锥轴承或 1 个双列圆锥轴承;直驱机型 1 个三排圆柱轴承)和 15-23 个齿轮箱轴承。其 中难度较低的偏航&变桨轴承已经实现国产替代,而难度较高的主轴轴承仍以海外进口为 主。据 CWEA、北极星风力发电网和风电观察报道,2021-2023 年,主轴轴承国产化率分 别为 32%、40%和 48%。国内主轴轴承从设计到生产制造,和海外产品的差距逐步缩小。 以洛轴为代表的国内主要轴承制造企业,主流机型所用的 3-6.25MW 主轴轴承已大批量装 机使用,10MW 以下的海上风电机组主轴轴承也进入研发、样机试用阶段,预计国产主轴 轴承市场占比超过进口轴承已成必然。
受益于风电装机需求旺盛,2026 年全球海风铸件市场规模有望达 62 亿元。根据中国 铸造协会估算,每 MW 风电整机大约需要 20-25 吨铸件。假设风电大型化、轻量化趋势下 2026 年风电铸件单位用量海外、国内分别降低至 17 吨/MW、15 吨/MW,以此测算,2023- 2026 年,全球海上风电铸件需求量有望从 9 万吨增长至 24 万吨,三年 CAGR 为 37.74%, 国内海上风电铸件需求量有望从 13 万吨增长至 30 万吨,三年 CAGR 为 32.39%。全球海 上风电铸件市场规模有望从 2023 年的 26 亿元增长至 2026 年 62 亿元,三年 CAGR 为 34.01%,国内海风铸件市场规模从 13 亿元增长至 29 亿元,三年 CAGR 为 30.14%。
2023 年全球海风新增装机前十强制造商中国占 7 家,全球累计装机外企占约五成。据 GWEC 统计,2023 年全球 12 家风机制造商共安装了 1120 台海上风机设备,装机规模约为 11GW。2023 年新增装机市场份额方面,明阳智能装机量达 2.9GW,占比 27.5%排名第 一,前十大制造商中国企业占 7 家,市场份额共达 67.0%,占比进一步提升。2023 年累计 装机市场份额方面,西门子歌美飒继续保持全球海上风机累计装机规模的首位,占比约 32.0%,在全球累计装机量排名前十位的制造商中,中国企业占据六家,市场份额达 48.6%。受益于中国海上风电装机量高企,中国制造商市场份额持续攀升。