米兰体育官方网站,米兰体育平台网址,米兰体育官网链接,米兰体育app下载网址,米兰,米兰体育,米兰集团,米兰体育官网,米兰体育app,米兰体育网页版,米兰真人,米兰电子,米兰棋牌,米兰体育APP,米兰体育下载,米兰体育APP下载,米兰百家乐,米兰体育注册,米兰体育平台,米兰体育登录,米兰体育靠谱吗,米兰平台,米兰比賽,米兰买球
所以当一个新的用户到来时,第二项的特征是没有,相当于仅用用户的画像等静态特征来解决新用户的预测问题。当一个新资讯时,也是同样的道理。静态特征如搜集到的用户的年龄、性别、地域等基础属性,以及从其他途径获取的如在相似产品上的行为、其他场景上的历史信息等,还有资讯的类目、主题等。而动态特征如用户在Yahoo Today上的各种阅读、点击、评分以及加工出来的某条资讯、某类资讯分时间段的各种统计值等。有了预测分s,和真实的label (比如用户是否点击一个资讯r(i,j))做个比较就能得到机器学习训练时的反馈信息。本文优化目标是基于贝叶斯理论推导出来的最大化后验概率(maximum-a-posteriori, MAP),而优化方法则采用熟知的梯度下降法(gradient-descent, GD)。
微软还发表了《A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems》,文章提出了一种有趣的得到user vector的方法,这是一个典型的multi-view learning的方法。现在很多公司都不仅仅只有一个产品,而是有多个产品线。比如微软可能就有搜索、新闻、appstore、xbox等产品,如果将用户在这些产品上的行为(反馈)统一在一起训练一个深度学习网络,就能很好的解决单个产品上(用户)冷启动、稀疏等问题。具体网络结构如下,总体的优化目标是保证在所有视图上user和正向反馈的item的相似度大于随机选取的无反馈或者负向反馈的相似度,并且越大越好。用数学公式形式化出来是: